login
Expansion of Product_{k>=1} (1 - x^k)^19.
2

%I #21 Feb 05 2018 16:35:05

%S 1,-19,152,-627,1140,988,-9063,14212,7410,-44270,22781,38114,36176,

%T -137256,-154850,480605,-46493,-316065,-153406,-254525,1156948,

%U -184927,88483,-1051042,-2381650,3838874,1417039,-542146

%N Expansion of Product_{k>=1} (1 - x^k)^19.

%D Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

%H Seiichi Manyama, <a href="/A010825/b010825.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.

%H <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>

%F a(0) = 1, a(n) = -(19/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017

%F G.f.: exp(-19*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_.