login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010819 Expansion of Product_{k>=1} (1 - x^k)^11. 2
1, -11, 44, -55, -110, 374, -143, -462, 55, 495, 1287, -2069, -902, 1210, -275, 3795, -1507, -2431, -3575, -385, 8690, -1661, 1143, 1265, -4290, -12716, 2299, 11440, 3905, 8635, -10472, 6105, -20548, -1540, 8690, -24904, 29634, 25003, 8470, -23320, -18183 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389.

Index entries for expansions of Product_{k >= 1} (1-x^k)^m

FORMULA

Expansion of q^(-11/24) * eta(q)^11 in powers of q. - Michael Somos, May 28 2013

a(n) == A010815(n) (mod 11). - Michael Somos, May 28 2013

a(0) = 1, a(n) = -(11/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017

G.f.: exp(-11*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

EXAMPLE

1 - 11*x + 44*x^2 - 55*x^3 - 110*x^4 + 374*x^5 - 143*x^6 - 462*x^7 + ...

q^11 - 11*q^35 + 44*q^59 - 55*q^83 - 110*q^107 + 374*q^131 - 143*q^155 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ q]^11, {q, 0, n}] (* Michael Somos, May 28 2013 *)

a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, n}]^11, {q, 0, n}] (* Michael Somos, May 28 2013 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^11, n))} /* Michael Somos, May 28 2013 */

CROSSREFS

Cf. A010815.

Sequence in context: A239266 A259963 A201991 * A022703 A061976 A070930

Adjacent sequences:  A010816 A010817 A010818 * A010820 A010821 A010822

KEYWORD

sign

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:11 EDT 2019. Contains 321305 sequences. (Running on oeis4.)