%I #42 Dec 27 2021 21:48:37
%S 1,-10,35,-30,-105,238,0,-260,-165,140,1054,-770,-595,0,-715,2162,455,
%T 0,-2380,-1820,2401,-680,1495,3080,1615,-6958,-1925,0,0,5100,-1442,
%U 8330,-5355,1330,0,-16790,0,8190,8265,0,1918,0,8415,-10230,-7140,-9362
%N Expansion of Product (1 - x^k)^10 in powers of x.
%D Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H Seiichi Manyama, <a href="/A010818/b010818.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H S. Cooper, <a href="http://dx.doi.org/10.1142/S1793042106000401">The Quintuple product identity</a>, Int. J. Number Theory 2 (2006), no. 1, 115-161. See after equation (73).
%H S. Cooper, M. D. Hirschhorn and R. Lewis, <a href="https://doi.org/10.1023/A:1009827103485">Powers of Euler's Product and Related Identities</a>, The Ramanujan Journal, Vol. 4 (2), 137-155 (2000).
%H S. R. Finch, <a href="https://arxiv.org/abs/math/0701251">Powers of Euler's q-Series</a>, arXiv:math/0701251 [math.NT], 2007.
%F Expansion of f(-x)^10 in powers of x where f() is a Ramanujan theta function.
%F Expansion of q^(-5/12) * eta(q)^10 in powers of q. - _Michael Somos_, Jun 09 2011
%F a(n) = b(12*n + 5) / 48 where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - _Michael Somos_, Jun 24 2013
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - _Michael Somos_, Jan 06 2014
%F G.f.: Product_{k>0} (1 - x^k)^10. a(49*n + 20) = 2401 * a(n).
%F 48 * a(n) = A234565(3*n + 1). a(7*n + 2) = 0 unless n == 2 (mod 7). - _Michael Somos_, Jul 18 2014
%F a(0) = 1, a(n) = -(10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017
%F G.f.: exp(-10*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018
%F Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are congruent to 7 (mod 12) or 11 (mod 12). Then a( M^2*n + 10*(M^2 - 1)/24 ) = M^4*a(n). See Cooper et al., Theorem 1. - _Peter Bala_, Dec 01 2020
%e G.f. = 1 - 10*x + 35*x^2 - 30*x^3 - 105*x^4 + 238*x^5 - 260*x^7 - 165*x^8 + ...
%e G.f. = q^5 - 10*q^17 + 35*q^29 - 30*q^41 - 105*q^53 + 238*q^65 - 260*q^89 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x]^10, {x, 0, n}]; (* _Michael Somos_, Jun 24 2013 *)
%o (PARI) {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^10, n))}; /* _Michael Somos_, Jun 09 2011 */
%o (PARI) {a(n) = local(m, x, y, z); if( n<0, 0, m = 12*n + 5; z = 0; for( x = -sqrtint(m), sqrtint(m), if( x%6 != 1, next); if( issquare( m - x^2, &y), if( y%6 == 2, y = -y); if( y%6 == 4, z += x*y * (x*x - y*y) ))); z / 6)}; /* _Michael Somos_, Jun 09 2011 */
%o (PARI) {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 5; A = factor(n); 1 / 48 * prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* _Michael Somos_, Jun 24 2013 */
%Y Cf. A122266, A234565.
%Y Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.
%K sign,easy
%O 0,2
%A _N. J. A. Sloane_