|
|
A010761
|
|
a(n) = floor(n/2) + floor(n/3).
|
|
10
|
|
|
0, 1, 2, 3, 3, 5, 5, 6, 7, 8, 8, 10, 10, 11, 12, 13, 13, 15, 15, 16, 17, 18, 18, 20, 20, 21, 22, 23, 23, 25, 25, 26, 27, 28, 28, 30, 30, 31, 32, 33, 33, 35, 35, 36, 37, 38, 38, 40, 40, 41, 42, 43, 43, 45, 45, 46, 47, 48, 48, 50, 50, 51, 52, 53, 53, 55, 55, 56, 57, 58, 58, 60, 60
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(n) = A004526(n) + A002264(n). - Reinhard Zumkeller, Jul 25 2005
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..2000
Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
|
|
FORMULA
|
G.f.: x^2*(1+2*x+2*x^2)/((1-x^2)*(1-x^3)). a(-n) = -2-a(n-1). - Michael Somos, Aug 07 2005
|
|
MAPLE
|
seq(floor(n/2) + floor(n/3), n=1..64);
|
|
MATHEMATICA
|
Table[Floor[n/2] + Floor[n/3], {n, 100}] (* Wesley Ivan Hurt, Feb 21 2014 *)
LinearRecurrence[{0, 1, 1, 0, -1}, {0, 1, 2, 3, 3}, 80] (* Harvey P. Dale, May 05 2018 *)
|
|
PROG
|
(PARI) a(n)=n\2+n\3
(MAGMA) [Floor (n/2)+Floor(n/3): n in [0..100]]; // Vincenzo Librandi, Feb 22 2014
|
|
CROSSREFS
|
Cf. A010762, A110532.
Sequence in context: A159237 A335599 A227065 * A320840 A161172 A093505
Adjacent sequences: A010758 A010759 A010760 * A010762 A010763 A010764
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|