

A010726


Period 2: repeat (6,10).


5



6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

From Klaus Brockhaus, Dec 10 2009: (Start)
Interleaving of A010722 and A010692.
Also continued fraction expansion of 3 + 4*sqrt(15)/5.
Binomial transform of 6 followed by A122803 without initial terms 1,2.
Inverse binomial transform of A171494. (End)


LINKS

Table of n, a(n) for n=0..65.
Index entries for linear recurrences with constant coefficients, signature (0,1).


FORMULA

a(n) = 2*(1)^n + 8 = 10*(n mod 2) + 6*((n+1) mod 2).  Paolo P. Lava, Oct 27 2006
From Klaus Brockhaus, Dec 10 2009: (Start)
a(n) = a(n2) for n > 1; a(0) = 6, a(1) = 10.
G.f.: 2*(3+5*x)/((1x)*(1+x)). (End)


MATHEMATICA

LinearRecurrence[{0, 1}, {6, 10}, 90] (* or *) PadRight[{}, 90, {6, 10}] (* Harvey P. Dale, Mar 07 2015 *)


PROG

(MAGMA) &cat[ [6, 10]: n in [1..42] ]; // Klaus Brockhaus, Dec 10 2009
(PARI) a(n)=6+n%2*4 \\ Charles R Greathouse IV, Dec 21 2011


CROSSREFS

Equals 2*A010703. Cf. A010722 (all 6's sequence), A010692 (all 10's sequence), A122803 (powers of 2), A171494.  Klaus Brockhaus, Dec 10 2009
Sequence in context: A074288 A156383 A247270 * A084365 A066135 A070393
Adjacent sequences: A010723 A010724 A010725 * A010727 A010728 A010729


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



