login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010703 Period 2: repeat (3,5). 8
3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3, 5, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

From Klaus Brockhaus, Dec 10 2009: (Start)

Interleaving of A010701 and A010716.

Also continued fraction expansion of (15+sqrt(285))/10.

Also decimal expansion of 35/99.

Binomial transform of 3 followed by A084633 without initial terms 1,0.

Inverse binomial transform of A171497. (End)

LINKS

Table of n, a(n) for n=0..80.

Index entries for linear recurrences with constant coefficients, signature (0,1).

FORMULA

a(n)=(-1)^(n+1)+4 a(n)=5*(n mod 2)+3*[(n+1) mod 2] - Paolo P. Lava, Oct 20 2006

From Klaus Brockhaus, Dec 10 2009: (Start)

a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 5.

G.f.: (3+5*x)/((1-x)*(1+x)). (End)

MATHEMATICA

Table[If[OddQ[n], 3, 5], {n, 1, 50}] (* Stefan Steinerberger, Apr 10 2006 *)

PadRight[{}, 120, {3, 5}] (* Harvey P. Dale, Sep 03 2012 *)

PROG

(MAGMA) &cat[ [3, 5]: n in [1..53] ]; // Klaus Brockhaus, Dec 10 2009

(PARI) a(n)=3+n%2*2 \\ Charles R Greathouse IV, Nov 20 2011

CROSSREFS

Cf. A010701 (all 3's sequence), A010716 (all 5's sequence), A084633 (inverse binomial transform of repeated odd numbers), A171497. - Klaus Brockhaus, Dec 10 2009

Sequence in context: A236965 A259684 A214287 * A107489 A152050 A103506

Adjacent sequences:  A010700 A010701 A010702 * A010704 A010705 A010706

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 12:49 EDT 2019. Contains 325159 sequences. (Running on oeis4.)