This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010687 Repeat (1,6): Period 2. 6
 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Continued fraction for (3+sqrt(15))/6. - Philippe Deléham, Sep 25 2006 This sequence can be generated by an infinite number of formulas all having the form a^(b*n) mod c subject to the following conditions. The number a can be congruent to either 3,5 or 6 mod 7. If a is congruent to 3 or 5 mod 7 then b can be any number of the form 3*k+6. If a is congruent to 6 mod 7 then b can be any number of the form 2k+1. Finally, if a is congruent to either 6, 26, or 31 mod 35 then c can be 7 or 35; otherwise, we use c = 7. For example: a(n) = 33^(15*n) mod 7, a(n) = 31^(9*n) mod 7, and a(n) = 31^(9*n) mod 35. - Gary Detlefs, May 19 2014 LINKS FORMULA G.f.: (1+6*x)/(1-x^2). - Philippe Deléham, Sep 25 2006 a(n) = 5/2*(-1)^n+7/2. a(n) = 6*(n mod 2)+((n+1) mod 2). - Paolo P. Lava, Oct 20 2006 a(n) = 6^n mod 7. - Zerinvary Lajos, Nov 26 2009 MAPLE A010687:=n->(6^n mod 7); seq(A010687(n), n=0..100); # Wesley Ivan Hurt, May 19 2014 MATHEMATICA Table[Mod[6^n, 7], {n, 0, 100}] (* Wesley Ivan Hurt, May 19 2014 *) PROG (Sage) [power_mod(6, n, 7)for n in xrange(0, 100)] # Zerinvary Lajos, Nov 26 2009 (PARI) a(n)=n%2*5+1 \\ Charles R Greathouse IV, Jul 13 2016 CROSSREFS Sequence in context: A193239 A023406 A138116 * A176355 A109918 A263494 Adjacent sequences:  A010684 A010685 A010686 * A010688 A010689 A010690 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 11 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 14:47 EST 2019. Contains 320163 sequences. (Running on oeis4.)