%I
%S 1,12,132,1452,15852,173172,1887492,20578452,224138292,2441606532,
%T 26583605772,289455960492,3150796704012,34298615880372,
%U 373292253262692,4062873240668412,44214072776280252,481167126859845852,5235893033922430692,56975931806991140292,619957835069070600132,6745858105534183489092
%N Number of nstep selfavoiding walks on 6d cubic lattice.
%H Hugo Pfoertner, <a href="/A010577/b010577.txt">Table of n, a(n) for n = 0..24</a> [from Clisby link below]
%H N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/17518113/40/36/003">Selfavoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 1097311017, Table A8 for n<=24.
%H M. E. Fisher and D. S. Gaunt, <a href="http://dx.doi.org/10.1103/PhysRev.133.A224">Ising model and selfavoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964) A224A239.
%Y Cf. A010576 (on 5d cubic lattice), A010575 (on 4d cubic lattice).
%K nonn,walk
%O 0,2
%A _N. J. A. Sloane_.
%E More terms from _R. J. Mathar_, Aug 31 2007
%E Corrected a(15), _Hugo Pfoertner_, Aug 16 2014
