login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010577 Number of n-step self-avoiding walks on 6-d cubic lattice. 1

%I

%S 1,12,132,1452,15852,173172,1887492,20578452,224138292,2441606532,

%T 26583605772,289455960492,3150796704012,34298615880372,

%U 373292253262692,4062873240668412,44214072776280252,481167126859845852,5235893033922430692,56975931806991140292,619957835069070600132,6745858105534183489092

%N Number of n-step self-avoiding walks on 6-d cubic lattice.

%H Hugo Pfoertner, <a href="/A010577/b010577.txt">Table of n, a(n) for n = 0..24</a> [from Clisby link below]

%H N. Clisby, R. Liang and G. Slade <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a> J. Phys. A: Math. Theor. vol. 40 (2007) p 10973-11017, Table A8 for n<=24.

%H M. E. Fisher and D. S. Gaunt, <a href="http://dx.doi.org/10.1103/PhysRev.133.A224">Ising model and self-avoiding walks on hypercubical lattices and high density expansions</a>, Phys. Rev. 133 (1964) A224-A239.

%Y Cf. A010576 (on 5-d cubic lattice), A010575 (on 4-d cubic lattice).

%K nonn,walk

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _R. J. Mathar_, Aug 31 2007

%E Corrected a(15), _Hugo Pfoertner_, Aug 16 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 13:47 EST 2020. Contains 331171 sequences. (Running on oeis4.)