login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010370 a(n) = binomial(2*n, n)^2 / (1-2*n). 6
1, -4, -12, -80, -700, -7056, -77616, -906048, -11042460, -139053200, -1796567344, -23696871744, -317933029232, -4326899214400, -59605244280000, -829705000377600, -11654762427179100, -165021757273414800, -2353088020380174000, -33764531705178120000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Expansion of hypergeometric function F(-1/2, 1/2; 1; 16*x).

Expansion of E(m)/(pi/2) in powers of m/16 = (k/4)^2, where E(m) is the complete elliptic integral of the second kind evaluated at m. - Michael Somos, Mar 04 2003

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 591.

J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.

LINKS

Robert Israel, Table of n, a(n) for n = 0..835

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

a(n) ~ 1/2*Pi^-1*n^-2*2^(4*n).

a(n) = -4 * A000891(n-1), n>0. - Michael Somos, Dec 13 2002

G.f.: F(-1/2, 1/2; 1; 16x) = E(16*x) / (Pi/2). a(n) = binomial(2*n, n)^2 / (1 - 2*n). - Michael Somos, Mar 04 2003

E.g.f. Sum_{n>=0} a(n) * (x/2)^(2n)/(2n)! = I0^2*(1-2*x^2) +2*x*I0*I1 +2*x^2*I1^2 where I0=BesselI(0, x), I1=BesselI(1, x). - Michael Somos, Jun 22 2005

n^2*a(n) -4*(2*n-1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Feb 15 2013

0 = a(n)*(+1048576*a(n+2) + 2695168*a(n+3) - 989568*a(n+4) + 65340*a(n+5)) + a(n+1)*(-8192*a(n+2) - 99840*a(n+3) + 52652*a(n+4) - 4236*a(n+5)) + a(n+2)*(-128*a(n+2) + 280*a(n+3) - 484*a(n+4) + 57*a(n+5)) for all n in Z. - Michael Somos, Jan 21 2017

a(n) = A002894(n) - 8 * A000894(n-1). - Michael Somos, Jul 10 2017

EXAMPLE

G.f. = 1 - 4*x - 12*x^2 - 80*x^3 - 700*x^4 - 7056*x^5 - 77616*x^6 - ...

MAPLE

seq(binomial(2*n, n)^2/(1-2*n), n=0..30); # Robert Israel, Jul 10 2017

MATHEMATICA

CoefficientList[Series[EllipticE[16x]2/Pi, {x, 0, 20}], x]

Table[Binomial[2n, n]^2/(1-2n), {n, 0, 30}] (* Harvey P. Dale, Mar 07 2013 *)

PROG

(PARI) {a(n) = binomial(2*n, n)^2 / (1 - 2*n)}; /* Michael Somos, Dec 13 2002 */

CROSSREFS

Cf. A000891, A000894, A002420, A002894

Sequence in context: A165261 A027145 A299795 * A197852 A305334 A205337

Adjacent sequences:  A010367 A010368 A010369 * A010371 A010372 A010373

KEYWORD

sign,easy

AUTHOR

Joe Keane (jgk(AT)jgk.org)

EXTENSIONS

Additional comments from Michael Somos, Dec 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 15 20:32 EST 2019. Contains 320138 sequences. (Running on oeis4.)