login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010186 Continued fraction for sqrt(125). 5
11, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5, 22, 5, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Periodic with period [5,1,1,5,22] of length 5 (after the initial term). - M. F. Hasler, Sep 09 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

G. Xiao, 'Contfrac' tool on WIMS.

Index entries for continued fractions for constants

Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,0,1).

FORMULA

a(n) = (1/25)*(-68*(n mod 5)-3*((n+1) mod 5)+17*((n+2) mod 5)+37*((n+3) mod 5)+102*((n+4) mod 5))-11*(C(2*n,n) mod 2). - Paolo P. Lava, Jul 24 2009

G.f.: (11+5*x+x^2+x^3+5*x^4+11*x^5)/((1-x)*(1+x+x^2+x^3+x^4)). - Bruno Berselli, Sep 10 2011

MATHEMATICA

ContinuedFraction[Sqrt[125], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2011*)

PROG

(PARI) default(realprecision, 199); contfrac(sqrt(125))  \\ _M. F. Hasler, Sep 09 2011

(PARI) a(n)=[22, 5, 1, 1, 5][n%5+1]-11*!n  \\ M. F. Hasler, Sep 09 2011

CROSSREFS

Cf. A172074.

Sequence in context: A166205 A141240 A038318 * A097531 A131029 A033331

Adjacent sequences:  A010183 A010184 A010185 * A010187 A010188 A010189

KEYWORD

nonn,cofr,easy,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 11:14 EST 2014. Contains 250056 sequences.