login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010088 Weight distribution of d=3 Hamming code of length 127. 0
1, 0, 0, 2667, 82677, 1984248, 40346376, 698136399, 10472045985, 138455313640, 1633772700952, 17377481697723, 167982323077989, 1485996809606736, 12100259735369136, 91155294690805839 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 129.

LINKS

Table of n, a(n) for n=0..15.

M. Terada, J. Asatani and T. Koumoto, Weight Distribution

EXAMPLE

The weight distribution is:

i A_i

0 1

3 2667

4 82677

5 1984248

6 40346376

7 698136399

8 10472045985

9 138455313640

10 1633772700952

11 17377481697723

12 167982323077989

13 1485996809606736

14 12100259735369136

15 91155294690805839

16 638087062835640873

17 4166333146052853552

18 25460924781434105040

19 146065305483269160835

20 788752649609653468509

21 4018882547238172355016

22 19363706818511194074168

23 88399531131386119148007

24 383064634902673182974697

25 1578226295785457917668888

26 6191503160389104138547176

27 23160808118541815153990579

28 82717171851935054121394925

29 282379310804718006044407200

30 922439081962078819745063520

31 2886341643559263104694304455

32 8659024930677789314082913365

33 24927496012555862201427876960

34 68917194858242677851006483360

35 183122832051905648227574489415

36 467980570799314434359357028505

37 1150979241695602290812068499320

38 2726003467173794899291741182600

39 6220879707140218581918768313275

40 13685935355708480880221290289205

41 29040887218210637159315728230120

42 59464673827764637992884586375960

43 117546448264185993885197347489815

44 224406855777082351962649481571465

45 413905978433285078143161128429360

46 737832396337595139298678533287120

47 1271583491560536557879927855087355

48 2119305819267560929799879758478925

49 3416839994329332521610566413573200

50 5330270391153758733712483605174192

51 8047663139585087324166406321172943

52 11761969204008973781473978469406609

53 16644296043408924306591066468540936

54 22808850133560377753476646642074616

55 30273564722725593421190356524797059

56 38923154643504334398673315531881933

57 48483227713838730919011449081237592

58 58514240344288123522944852339424680

59 68431908199252213890524837937373695

60 77556162625819175742594816329023521

61 85184637638194830580902393173363904

62 90680420711626755134508999184548672

63 93559164226281574604995522172224803

64 93559164226281574604995522172224803

65 90680420711626755134508999184548672

66 85184637638194830580902393173363904

67 77556162625819175742594816329023521

68 68431908199252213890524837937373695

69 58514240344288123522944852339424680

70 48483227713838730919011449081237592

71 38923154643504334398673315531881933

72 30273564722725593421190356524797059

73 22808850133560377753476646642074616

74 16644296043408924306591066468540936

75 11761969204008973781473978469406609

76 8047663139585087324166406321172943

77 5330270391153758733712483605174192

78 3416839994329332521610566413573200

79 2119305819267560929799879758478925

80 1271583491560536557879927855087355

81 737832396337595139298678533287120

82 413905978433285078143161128429360

83 224406855777082351962649481571465

84 117546448264185993885197347489815

85 59464673827764637992884586375960

86 29040887218210637159315728230120

87 13685935355708480880221290289205

88 6220879707140218581918768313275

89 2726003467173794899291741182600

90 1150979241695602290812068499320

91 467980570799314434359357028505

92 183122832051905648227574489415

93 68917194858242677851006483360

94 24927496012555862201427876960

95 8659024930677789314082913365

96 2886341643559263104694304455

97 922439081962078819745063520

98 282379310804718006044407200

99 82717171851935054121394925

100 23160808118541815153990579

101 6191503160389104138547176

102 1578226295785457917668888

103 383064634902673182974697

104 88399531131386119148007

105 19363706818511194074168

106 4018882547238172355016

107 788752649609653468509

108 146065305483269160835

109 25460924781434105040

110 4166333146052853552

111 638087062835640873

112 91155294690805839

113 12100259735369136

114 1485996809606736

115 167982323077989

116 17377481697723

117 1633772700952

118 138455313640

119 10472045985

120 698136399

121 40346376

122 1984248

123 82677

124 2667

127 1

CROSSREFS

Sequence in context: A110838 A019424 A151813 * A252301 A250855 A235253

Adjacent sequences:  A010085 A010086 A010087 * A010089 A010090 A010091

KEYWORD

nonn,fini

AUTHOR

N. J. A. Sloane. Entry revised Jul 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)