The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010061 Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m. 43
 1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, 46, 48, 51, 54, 56, 63, 71, 78, 80, 83, 86, 88, 95, 97, 102, 104, 111, 113, 116, 119, 121, 128, 130, 133, 135, 142, 144, 147, 150, 152, 159, 161, 166, 168, 175, 177, 180, 183, 185, 192, 200, 207, 209, 212, 215, 217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS No two consecutive values appear in this sequence (see Links). - Griffin N. Macris, May 31 2020 The asymptotic density of this sequence is (1/8) * (2 - Sum_{n>=1} 1/2^a(n))^2 = 0.252660... (A242403). - Amiram Eldar, Nov 28 2020 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180. József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386. G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365, 2021; Journal of Combinatorics and Number Theory, 2022 (to appear). Griffin N. Macris, Proof that no consecutive self numbers exist, 2020. G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II, Bollettino dell'Unione Matematica Italiana, 2-A (1999), 397-399. MAPLE # For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013 MATHEMATICA Table[n + Total[IntegerDigits[n, 2]], {n, 0, 300}] // Complement[Range[Last[#]], #]& (* Jean-François Alcover, Sep 03 2013 *) PROG (Scheme, with Antti Karttunen's IntSeq-library) (define A010061 (ZERO-POS 1 0 A228085)) (Haskell) a010061 n = a010061_list !! (n-1) a010061_list = filter ((== 0) . a228085) [1..] -- Reinhard Zumkeller, Oct 13 2013 /* PARI: Gen(n, b) returns a list of the generators of n in base b. Written by Max Alekseyev (see Alekseyev et al., 2021). For example, Gen(101, 10) returns [91, 101]. - N. J. A. Sloane, Jan 02 2022 */ { Gen(u, b=10) = my(d, m, k); if(u<0 || u==1, return([]); ); if(u==0, return([0]); ); d = #digits(u, b)-1; m = u\b^d; while( sumdigits(m, b) > u - m*b^d, m--; if(m==0, m=b-1; d--; ); ); k = u - m*b^d - sumdigits(m, b); vecsort( concat( apply(x->x+m*b^d, Gen(k, b)), apply(x->m*b^d-1-x, Gen((b-1)*d-k-2, b)) ) ); } CROSSREFS Complement of A228082, or equally, numbers which do not occur in A092391. Gives the positions of zeros (those occurring after a(0)) in A228085-A228087 and positions of ones in A227643. Leftmost column of A228083. Base-10 analog: A003052. Cf. A010062, A055938, A230091, A230092, A230058, A242403. Cf. A228088, A227915, A232228. Sequence in context: A247787 A074165 A137821 * A280557 A266665 A249715 Adjacent sequences: A010058 A010059 A010060 * A010062 A010063 A010064 KEYWORD nonn,base AUTHOR EXTENSIONS More terms from Antti Karttunen, Aug 17 2013 Better definition from Matthew C. Russell, Oct 08 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 23:44 EST 2022. Contains 358485 sequences. (Running on oeis4.)