%I #24 Sep 08 2022 08:44:37
%S 1,12,72,292,862,2052,4212,7772,13242,21212,32352,47412,67222,92692,
%T 124812,164652,213362,272172,342392,425412,522702,635812,766372,
%U 916092,1086762,1280252,1498512,1743572,2017542,2322612,2661052,3035212,3447522,3900492,4396712
%N Coordination sequence for squashed {D_5}* lattice, perhaps the smallest example of a "non-superficial" lattice.
%H T. D. Noe, <a href="/A010024/b010024.txt">Table of n, a(n) for n = 0..1000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%F a(n) = 10/3*n^4-5/3*n^3+20/3*n^2+5/3*n+2 for n>0 (from Maple section).
%F From _Gopinath A. R._, Feb 14 2012, (Start)
%F G.f.: -(x^5+7*x^4+42*x^3+22*x^2+7*x+1)/(x^5-5*x^4+10*x^3-10*x^2+5*x-1).
%F E.g.f.: 1/3*(10*x^4+55*x^3+75*x^2+30*x+6)*e^x-1. (End)
%p 10/3*n^4-5/3*n^3+20/3*n^2+5/3*n+2;
%o (Magma) [1] cat [10/3*n^4-5/3*n^3+20/3*n^2+5/3*n+2: n in [1..40]]; // _Vincenzo Librandi_, Aug 03 2015
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.