login
a(0) = 1, a(n) = 17*n^2 + 2 for n>0.
1

%I #38 May 07 2024 05:54:34

%S 1,19,70,155,274,427,614,835,1090,1379,1702,2059,2450,2875,3334,3827,

%T 4354,4915,5510,6139,6802,7499,8230,8995,9794,10627,11494,12395,13330,

%U 14299,15302,16339,17410,18515,19654,20827,22034,23275,24550,25859,27202,28579

%N a(0) = 1, a(n) = 17*n^2 + 2 for n>0.

%C Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=3, s=2. After 1, all terms are in A000408. - _Bruno Berselli_, Feb 06 2012

%H Bruno Berselli, <a href="/A010007/b010007.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: (1+x)*(1+15*x+x^2)/(1-x)^3. - _Bruno Berselli_, Feb 06 2012

%F E.g.f. : (x*(x+1)*17+2)*e^x-1. - _Gopinath A. R._, Feb 14 2012

%F Sum_{n>=0} 1/a(n) = 3/4+sqrt(34)/68*Pi*coth(Pi*sqrt(34)/17) = 1.09001290652... - _R. J. Mathar_, May 07 2024

%F a(n) = A069130(n)+A069130(n+1). - _R. J. Mathar_, May 07 2024

%t Join[{1}, 17 Range[41]^2 + 2] (* _Bruno Berselli_, Feb 06 2012 *)

%t Join[{1}, LinearRecurrence[{3, -3, 1}, {19, 70, 155}, 50]] (* _Vincenzo Librandi_, Aug 03 2015 *)

%o (Magma) [1] cat [17*n^2+2: n in [1..50]]; // _Vincenzo Librandi_, Aug 03 2015

%Y Cf. A206399.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Bruno Berselli_, Feb 06 2012