|
|
A010007
|
|
a(0) = 1, a(n) = 17*n^2 + 2 for n>0.
|
|
1
|
|
|
1, 19, 70, 155, 274, 427, 614, 835, 1090, 1379, 1702, 2059, 2450, 2875, 3334, 3827, 4354, 4915, 5510, 6139, 6802, 7499, 8230, 8995, 9794, 10627, 11494, 12395, 13330, 14299, 15302, 16339, 17410, 18515, 19654, 20827, 22034, 23275, 24550, 25859, 27202, 28579
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=3, s=2. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012
|
|
LINKS
|
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
G.f.: (1+x)*(1+15*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f. : (x*(x+1)*17+2)*e^x-1. - Gopinath A. R., Feb 14 2012
|
|
MATHEMATICA
|
Join[{1}, 17 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {19, 70, 155}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
|
|
PROG
|
(MAGMA) [1] cat [17*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
|
|
CROSSREFS
|
Cf. A206399.
Sequence in context: A007546 A007547 A217081 * A172078 A196136 A198002
Adjacent sequences: A010004 A010005 A010006 * A010008 A010009 A010010
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
EXTENSIONS
|
More terms from Bruno Berselli, Feb 06 2012
|
|
STATUS
|
approved
|
|
|
|