login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009969 Powers of 25. 26

%I

%S 1,25,625,15625,390625,9765625,244140625,6103515625,152587890625,

%T 3814697265625,95367431640625,2384185791015625,59604644775390625,

%U 1490116119384765625,37252902984619140625,931322574615478515625,23283064365386962890625,582076609134674072265625,14551915228366851806640625,363797880709171295166015625,9094947017729282379150390625

%N Powers of 25.

%C A000005(a(n)) = A005408(n+1). - _Reinhard Zumkeller_, Mar 04 2007

%C The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - _Milan Janjic_, Nov 17 2011

%H T. D. Noe, <a href="/A009969/b009969.txt">Table of n, a(n) for n = 0..100</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (25).

%F G.f.: 1/(1-25*x). - _Philippe Deléham_, Nov 23 2008

%F E.g.f.: exp(25*x). - _Zerinvary Lajos_, Apr 29 2009

%F a(n) = 25^n; a(n) = 25*a(n-1), n > 0; a(0)=1. - _Vincenzo Librandi_, Nov 21 2010

%t 25^Range[0,20] (* or *) NestList[25#&,1,20] (* _Harvey P. Dale_, Dec 12 2016 *)

%o (Sage) [lucas_number1(n,25,0) for n in range(1, 17)] # _Zerinvary Lajos_, Apr 29 2009

%o (MAGMA) [25^n: n in [0..100]] // _Vincenzo Librandi_, Nov 21 2010

%o (PARI) a(n)=25^n \\ _Charles R Greathouse IV_, Sep 24 2015

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 20:58 EST 2021. Contains 341811 sequences. (Running on oeis4.)