|
|
|
|
1, 25, 625, 15625, 390625, 9765625, 244140625, 6103515625, 152587890625, 3814697265625, 95367431640625, 2384185791015625, 59604644775390625, 1490116119384765625, 37252902984619140625, 931322574615478515625, 23283064365386962890625, 582076609134674072265625, 14551915228366851806640625, 363797880709171295166015625, 9094947017729282379150390625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..100
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (25).
|
|
FORMULA
|
G.f.: 1/(1-25*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(25*x). - Zerinvary Lajos, Apr 29 2009
a(n) = 25^n; a(n) = 25*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
|
|
MATHEMATICA
|
25^Range[0, 20] (* or *) NestList[25#&, 1, 20] (* Harvey P. Dale, Dec 12 2016 *)
|
|
PROG
|
(Sage) [lucas_number1(n, 25, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(MAGMA) [25^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=25^n \\ Charles R Greathouse IV, Sep 24 2015
|
|
CROSSREFS
|
Sequence in context: A207196 A207216 A171299 * A042202 A203341 A260048
Adjacent sequences: A009966 A009967 A009968 * A009970 A009971 A009972
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|