login
A009929
Coefficients in expansion of Euler's constant gamma as Sum_{n>=1} a(n)/(n*n!*(n+1)!), as found by greedy algorithm.
0
1, 1, 15, 9, 19, 33, 41, 6, 54, 119, 74, 165, 0, 191, 92, 286, 150, 214, 389, 297, 168, 439, 432, 386, 52, 543, 99, 416, 536, 902, 427, 225, 497, 194, 1168, 850, 806, 399, 955, 665, 519, 1648, 597, 1378, 547, 786, 1516, 978, 1169, 53, 988
OFFSET
1,3
FORMULA
a(n) = floor(n! * n * (n+1)! * b(n-1))) where b(0) = gamma and b(n) = b(n-1) - a(n) / (n! * n *(n+1)!). - Sean A. Irvine, May 01 2018
PROG
(Macsyma) Ouang(x, n) := block([ ans : [ ] ], for k through n do (push(floor(multthru(k!*k*(k+1)!, x)), ans), x: x-ans[ 1 ]/(k!*k*(k+1)!)), reverse(ans)); Ouang(%gamma, 25);
CROSSREFS
Cf. A001620.
Sequence in context: A349478 A182165 A139725 * A166523 A123542 A215236
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, May 01 2018
STATUS
approved