login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coordination sequence for Cr3Si, Si position.
4

%I #41 Apr 10 2018 08:26:36

%S 1,12,50,120,218,344,546,728,902,1212,1526,1784,2154,2552,2954,3432,

%T 3854,4340,4998,5504,6002,6768,7442,8024,8814,9572,10334,11232,11978,

%U 12824,13938,14768,15590,16812,17846,18752,19962,21080,22202,23520

%N Coordination sequence for Cr3Si, Si position.

%D Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (223) cP8.

%H R. W. Grosse-Kunstleve, <a href="/A009927/b009927.txt">Table of n, a(n) for n = 0..1000</a>

%H V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, <a href="http://pubs.acs.org/doi/pdf/10.1021/cg500498k">Applied Topological Analysis of Crystal Structures with the Program Package ToposPro</a>, Cryst. Growth Des. 2014, 14, 3576-3586. See Table I.

%H R. W. Grosse-Kunstleve, <a href="/A005897/a005897.html">Coordination Sequences and Encyclopedia of Integer Sequences</a>

%H R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, <a href="http://neilsloane.com/doc/ac96cs/">Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites</a>, Acta Cryst., A52 (1996), pp. <a href="http://dx.doi.org/10.1107/S0108767396007519">879-889</a>.

%F G.f.: (1+12*x+51*x^2+130*x^3+243*x^4+350*x^5+450*x^6+418*x^7 +327*x^8+182*x^9+51*x^10+16*x^11-7*x^12+8*x^13+12*x^14)/ ((1+x)*(1+x^2)^2*(1+x+x^2)^2*(1-x)^3). - _Robert Israel_, Dec 18 2015

%F Empirical: a(n) = (1903/72) + (3/8)*(-1)^n + 19*KroneckerDelta[n,0] - 8*KroneckerDelta[n,1] - 12*KroneckerDelta[n,2] + ((n+1)/12)*(187*n-273) - (32*sqrt(3)/27)*((13/2)*cos((4n+1)*Pi/6) + sin(2n*Pi/3)) - (3*sqrt(26)/2)*(-1)^n*cos(n*Pi/2 + arctan(1/5)) - (3/4)*i^n*(1+(-1)^n)*(n+2). - _G. C. Greubel_, Dec 18 2015

%F G.f.: (1 + 12*x + 50*x^2 + 118*x^3 + 192*x^4 + 220*x^5 + 207*x^6 + 68*x^7-123*x^8-236*x^9-276*x^10-166*x^11-58*x^12-8*x^13 + 19*x^14-8*x^15-12*x^16) / (1-x^3)^2 / (1-x^4)^2. - _Sean A. Irvine_, Mar 15 2018

%K nonn

%O 0,2

%A _Ralf W. Grosse-Kunstleve_