login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009926 Coordination sequence for CaF2(2), Ca position. 1
1, 8, 12, 48, 42, 128, 92, 248, 162, 408, 252, 608, 362, 848, 492, 1128, 642, 1448, 812, 1808, 1002, 2208, 1212, 2648, 1442, 3128, 1692, 3648, 1962, 4208, 2252, 4808, 2562, 5448, 2892, 6128, 3242, 6848, 3612, 7608, 4002, 8408, 4412, 9248, 4842 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF12.

LINKS

Sean A. Irvine, Table of n, a(n) for n = 0..1000

R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences

R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.

Sean A. Irvine, Generating Functions for Coordination Sequences of Zeolites, after Grosse-Kunstleve, Brunner, and Sloane

Index entries for linear recurrences with constant coefficients, signature (0, 3, 0, -3, 0, 1).

FORMULA

From Colin Barker, Sep 09 2014: (Start)

a(n) = (-2*(-5+(-1)^n)-5*(-3+(-1)^n)*n^2)/4 for n>0.

a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>6.

G.f.: -(x^6+8*x^5+9*x^4+24*x^3+9*x^2+8*x+1) / ((x-1)^3*(x+1)^3). (End)

G.f.: (1+8*x+9*x^2+24*x^3+9*x^4+8*x^5+x^6) / (1-x^2)^3

MATHEMATICA

Join[{1}, LinearRecurrence[{0, 3, 0, -3, 0, 1}, { 8, 12, 48, 42, 128, 92}, 44]] (* Georg Fischer, Feb 27 2019 *)

CROSSREFS

Sequence in context: A032410 A077101 A229497 * A022668 A286360 A212815

Adjacent sequences:  A009923 A009924 A009925 * A009927 A009928 A009929

KEYWORD

nonn

AUTHOR

Ralf W. Grosse-Kunstleve

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 18:58 EDT 2019. Contains 328127 sequences. (Running on oeis4.)