This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009752 Expansion of e.g.f. tan(x)*x (even powers only). 7
 0, 2, 8, 96, 2176, 79360, 4245504, 313155584, 30460116992, 3777576173568, 581777702256640, 108932957168730112, 24370173276164456448, 6419958484945407574016, 1967044844910430876860416, 693575525634287935244206080, 278846808228005417477465964544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..240 FORMULA a(n) = n 4^n |E_{2n-1}(1/2)+E_{2n-1}(1)| for n > 0; E_{n}(x) Euler polynomials. - Peter Luschny, Nov 25 2010 a(n) = (2*n)! * [x^(2*n)] tan(x)*x. a(n) = 2*(2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - Peter Luschny, Jun 29 2012 E.g.f.: sqrt(x)*tan(sqrt(x))= sum(n>=0,  a(n)*x^n/(2*n)! ) = x/T(0) where T(k)= 1 - 4*k^2 + x*(1 - 4*k^2)/T(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 19 2012 E.g.f.: -1 - x^(1/2)- Q(0),where Q(k) = 4*k -1 - x/( 1 - x/ (4*k+1 + x/( 1 + x/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013 From Peter Luschny, Jun 09 2016: (Start) a(n) = (4^n-16^n)*Sum_{k=0..2*n) (-1)^(n-k)*Stirling2(2*n, k)*k!/(k+1). 2*a(n)/4^n = A110501(n) for n>=1. a(n) / 2^n = A117513(n) for n>=1. (End) a(n) ~ (4*(4^(2*n)-2^(2*n)))*Pi*(n/(Pi*e))^(2*n+1/2)*exp(1/2+1/(24*n)-1/(2880*n^3) +1/(40320*n^5)-...). - Peter Luschny, Jan 16 2017 EXAMPLE 2*x/(1+e^(2*x)) = 0 + x - 2/2!*x^2 + 8/4!*x^4 - 96/6!*x^6 + 2176/8!*x^8 ... MAPLE a := n -> 4^n*n*`if`(n=0, 0, abs(euler(2*n-1, 0))): # Peter Luschny, Jun 09 2016 MATHEMATICA nn = 30; t = Range[0, nn]! CoefficientList[Series[x*Tan[x], {x, 0, nn}], x]; Take[t, {1, nn + 1, 2}] (* T. D. Noe, Sep 20 2012 *) PROG (PARI) x='x+O('x^50); v=Vec(serlaplace(x*tan(x))); concat([0], vector(#v\2, n, v[2*n-1])) \\ G. C. Greubel, Feb 12 2018 CROSSREFS Cf. A009725, A065619, A099028, A110501, A117513. A diagonal of A232933. Sequence in context: A136797 A255132 A297332 * A137704 A001417 A156926 Adjacent sequences:  A009749 A009750 A009751 * A009753 A009754 A009755 KEYWORD nonn,changed AUTHOR EXTENSIONS Extended and signs tested by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 02:47 EST 2018. Contains 299357 sequences. (Running on oeis4.)