login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009710 E.g.f. tan(tan(x)^2) (even powers only). 2
0, 2, 16, 512, 34816, 3821312, 618121216, 138682959872, 41171702972416, 15610723195092992, 7357121913006063616, 4217775794187229724672, 2889975739296119171055616, 2332177121915783600628826112 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..13.

FORMULA

a(n)=4*sum(m=0..n-1/2, ((sum(j=1..2*m+1, j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1,j)))*sum(j=4*m+2..2*n, binomial(j-1,4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n,j)))/(2*m+1)!). [Vladimir Kruchinin, Jun 21 2011]

a(n) ~ (2*n)! * 2 * sqrt(2) / ((2+Pi) * sqrt(Pi) * arctan(sqrt(Pi/2))^(2*n+1)). - Vaclav Kotesovec, Jan 24 2015

EXAMPLE

tan(tan(x)*tan(x))=2/2!*x^2+16/4!*x^4+512/6!*x^6+34816/8!*x^8...

MATHEMATICA

nn = 20; Table[(CoefficientList[Series[Tan[Tan[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)

PROG

(Maxima)

a(n):=4*sum(((sum(j!*2^(2*m-j)*(-1)^(m+1+j)*stirling2(2*m+1, j), j, 1, 2*m+1))*sum(binomial(j-1, 4*m+1)*j!*2^(2*n-j-1)*(-1)^(n+1+j)*stirling2(2*n, j), j, 4*m+2, 2*n))/(2*m+1)!, m, 0, n-1/2); [Vladimir Kruchinin, Jun 21 2011]

CROSSREFS

Sequence in context: A168403 A140311 A012389 * A012393 A189899 A189335

Adjacent sequences: A009707 A009708 A009709 * A009711 A009712 A009713

KEYWORD

nonn

AUTHOR

R. H. Hardin

EXTENSIONS

Extended and signs tested Mar 15 1997 by Olivier Gérard.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 7 10:30 EST 2023. Contains 360115 sequences. (Running on oeis4.)