login
A009483
E.g.f. sin(sin(x)*exp(x)).
0
0, 1, 2, 1, -12, -83, -338, -555, 4872, 58713, 355322, 988073, -6857796, -129165307, -1078218906, -4414644611, 23381079184, 664338643633, 7109036257394, 38790001170257, -152532610916348, -6632928177660835, -87579228437764450
OFFSET
0,3
FORMULA
a(n)=sum(j=0..(n-1)/2, (2^(-(2*j))*sum(k=j..(n-1)/2, binomial(n,n-2*k-1)*((2*j+1)^(n-2*k-1)*sum(i=0..(2*j+1)/2, (2*i-2*j-1)^(2*k+1)*binomial(2*j+1,i)*(-1)^(k+1-i)))))/(2*j+1)!). - Vladimir Kruchinin, Jun 13 2011
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Sin[Sin[x]Exp[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jun 12 2013 *)
PROG
(Maxima)
a(n):=sum((2^(-(2*j))*sum(binomial(n, n-2*k-1)*((2*j+1)^(n-2*k-1)*sum((2*i-2*j-1)^(2*k+1)*binomial(2*j+1, i)*(-1)^(k+1-i), i, 0, (2*j+1)/2)), k, j, (n-1)/2))/(2*j+1)!, j, 0, (n-1)/2); /* Vladimir Kruchinin, Jun 13 2011 */
CROSSREFS
Sequence in context: A012291 A012585 A053566 * A181867 A231611 A171510
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved