OFFSET
0,3
FORMULA
a(n)=sum(j=0..(n-1)/2, (2^(-(2*j))*sum(k=j..(n-1)/2, binomial(n,n-2*k-1)*((2*j+1)^(n-2*k-1)*sum(i=0..(2*j+1)/2, (2*i-2*j-1)^(2*k+1)*binomial(2*j+1,i)*(-1)^(k+1-i)))))/(2*j+1)!). - Vladimir Kruchinin, Jun 13 2011
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Sin[Sin[x]Exp[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jun 12 2013 *)
PROG
(Maxima)
a(n):=sum((2^(-(2*j))*sum(binomial(n, n-2*k-1)*((2*j+1)^(n-2*k-1)*sum((2*i-2*j-1)^(2*k+1)*binomial(2*j+1, i)*(-1)^(k+1-i), i, 0, (2*j+1)/2)), k, j, (n-1)/2))/(2*j+1)!, j, 0, (n-1)/2); /* Vladimir Kruchinin, Jun 13 2011 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved