The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009442 E.g.f. log(1 + x/cos(x)). 2
 0, 1, -1, 5, -18, 109, -720, 5977, -56336, 612729, -7453440, 100954061, -1502172672, 24395453861, -429076910080, 8128143367905, -164961704478720, 3571195811862385, -82142328351817728, 2000535014776893973 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n)=2*n!*sum(m=1..(n-1)/2, ((-1)^(n-1)*sum(j=0..m, binomial((n/2-m+j-1),j)*4^(m-j)*sum(i=0..j, (i-j)^(2*m)*binomial(2*j,i)*(-1)^(m+j-i))))/((n-2*m)*(2*m)!))+(-1)^(n-1)*n!/n. - Vladimir Kruchinin, Jun 16 2011 a(n) ~ (n-1)! * (-1)^(n+1) / r^n, where r = 0.7390851332151606416553120876738734040134117589... (see A003957) is the root of the equation cos(r) = r. - Vaclav Kotesovec, Jan 24 2015 MATHEMATICA CoefficientList[Series[Log[1 + x*Sec[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *) PROG (Maxima) a(n):=2*n!*sum(((-1)^(n-1)*sum(binomial((n/2-m+j-1), j)*4^(m-j)*sum((i-j)^(2*m)*binomial(2*j, i)*(-1)^(m+j-i), i, 0, j), j, 0, m))/((n-2*m)*(2*m)!), m, 1, (n-1)/2)+(-1)^(n-1)*n!/n; /* Vladimir Kruchinin, Jun 16 2011 */ CROSSREFS Cf. A003957. Sequence in context: A127756 A228614 A158455 * A332784 A302435 A332467 Adjacent sequences:  A009439 A009440 A009441 * A009443 A009444 A009445 KEYWORD sign,easy AUTHOR EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:25 EDT 2020. Contains 336422 sequences. (Running on oeis4.)