login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A009252 E.g.f. exp(x*tan(x)) (even powers only). 2
1, 2, 20, 456, 18192, 1111840, 96035136, 11101474944, 1651123634432, 306656507699712, 69472549405824000, 18838618322988648448, 6019938761233443262464, 2237523930630521828745216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..238

FORMULA

a(n)=sum(k=1..n, (binomial(2*n,k)*sum(j=k..2*n-k, binomial(j-1,k-1)*j!*(-1)^(n+j)*2^(2*n-k-j)*stirling2(2*n-k,j)))), n>0, a(0)=1. [Vladimir Kruchinin, Jun 06 2011]

a(n) ~ n^(2*n-1/4) * 2^(4*n+1/4) * exp(2*sqrt(2*n)-2*n-1/2) / Pi^(2*n) * (1 - (Pi^2-1)/(12*sqrt(2*n))). - Vaclav Kotesovec, Jan 20 2015

MATHEMATICA

Exp[ Tan[ x ]*x ] (* Even Part *)

With[{nn=40}, Take[CoefficientList[Series[Exp[Tan[x]*x], {x, 0, nn}], x]*Range[0, nn]!, {1, -1, 2}]] (* Vaclav Kotesovec, Jan 20 2015 *)

PROG

(Maxima)

a(n):=sum((binomial(2*n, k)*sum(binomial(j-1, k-1)*j!*(-1)^(n+j)*2^(2*n-k-j)*stirling2(2*n-k, j), j, k, 2*n-k)), k, 1, n); [Vladimir Kruchinin, Jun 06 2011]

CROSSREFS

Cf. A024263.

Sequence in context: A012533 A009160 A188811 * A210901 A274572 A274738

Adjacent sequences:  A009249 A009250 A009251 * A009253 A009254 A009255

KEYWORD

nonn

AUTHOR

R. H. Hardin

EXTENSIONS

Extended and signs tested Mar 15 1997 by Olivier Gérard.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.