The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009235 E.g.f. exp( sinh(x) / exp(x) ) = exp( (1-exp(-2*x))/2 ). 13
 1, 1, -1, -1, 9, -23, -25, 583, -3087, 4401, 79087, -902097, 4783801, 2361049, -348382697, 4102879415, -24288551071, -47413121055, 3214104039007, -44472852461857, 326386562502889, 417716032223049, -55104307651136313, 962111031220099495 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Hankel transform is (-1)^binomial(n+1,2)*A108400. - Paul Barry, Apr 15 2010 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..529 I. M. Gessel,  Applications of the classical umbral calculus, arXiv:math/0108121 [math.CO], 2001. FORMULA a(n) = Sum_{k=0..n} (-2)^(n-k)*Stirling2(n, k). - Vladeta Jovovic, Apr 04 2003 From Peter Bala, May 16 2012: (Start) Recurrence equation: a(n+1) = Sum_{k = 0..n} (-2)^(n-k)*C(n,k)*a(k). Written umbrally this is a(n+1) = (a-2)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a-2) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a+2)*(a+4)*...*(a+2*(n-1)) = 1 with a(0) = 1. Cf. A004211. Touchard's congruence holds for odd prime p: a(p+k) = (a(k) + a(k+1)) (mod p) for k = 0,1,2, ... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) = 2 (mod p) for odd prime p. (End) From Sergei N. Gladkovskii, Sep 21 2012 - Oct 24 2013: (Start) Continued fractions: G.f.: (1/E(0)-1)/x where E(k)=  1 - x/(1 - 2*x + 2*x*(k+1)/E(k+1)); G.f.: 1 +x/G(0) where G(k)= 1 + 2*x/(1 + 1/(1 + 4*x*(k+1)/G(k+1))); G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+x*2*k)/(1-x/(x-1/G(k+1))); G.f.: 1/Q(0) where Q(k)= 1 - x/(1 + 2*x*(k+1)/Q(k+1) ); G.f.: Q(0)/(1-x), where Q(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) + (1-x+2*x*k)*(1+x+2*x*k)/Q(k+1)). (End) Lim sup n->infinity (abs(a(n))/n!)^(1/n) / (2*abs(exp(1/LambertW(-2*n)) / LambertW(-2*n))) = 1. - Vaclav Kotesovec, Aug 04 2014 a(n) = (-2)^n*B_n(-1/2), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015 G.f. A(x) satisfies: A(x) = 1 + x*A(x/(1 + 2*x))/(1 + 2*x). - Ilya Gutkovskiy, May 02 2019 MAPLE a := n -> (-2)^n*add(Stirling2(n, k)*(-1/2)^k, k=0..n): seq(a(n), n=0..23); # Peter Luschny, Jan 06 2020 MATHEMATICA With[{nn=30}, CoefficientList[Series[Exp[Sinh[x]/Exp[x]], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jan 07 2013 *) Table[(-2)^n BellB[n, -1/2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *) PROG (PARI) x='x+O('x^66); /* that many terms */ v=Vec(serlaplace(exp(sinh(x)/exp(x)))) /* Joerg Arndt, May 19 2012 */ CROSSREFS Cf. A004211, A317996, A318179, A318180, A318181. Sequence in context: A156342 A133769 A165484 * A031023 A199714 A054302 Adjacent sequences:  A009232 A009233 A009234 * A009236 A009237 A009238 KEYWORD sign,easy AUTHOR EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 09:20 EDT 2021. Contains 342948 sequences. (Running on oeis4.)