login
a(n) = gcd(n, sigma(n)).
114

%I #49 Feb 07 2024 01:16:00

%S 1,1,1,1,1,6,1,1,1,2,1,4,1,2,3,1,1,3,1,2,1,2,1,12,1,2,1,28,1,6,1,1,3,

%T 2,1,1,1,2,1,10,1,6,1,4,3,2,1,4,1,1,3,2,1,6,1,8,1,2,1,12,1,2,1,1,1,6,

%U 1,2,3,2,1,3,1,2,1,4,1,6,1,2,1,2,1,28,1,2,3,4,1,18,7,4,1,2,5,12,1,1,3,1,1,6,1,2

%N a(n) = gcd(n, sigma(n)).

%C LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - _Labos Elemer_, Aug 14 2002

%H Reinhard Zumkeller, <a href="/A009194/b009194.txt">Table of n, a(n) for n = 1..10000</a>

%H P. Pollack, <a href="http://projecteuclid.org/euclid.mmj/1301586311">On the greatest common divisor of a number and its sum of divisors</a>, Michigan Math. J. Volume 60, Issue 1 (2011), 199-214.

%F A000005(a(n)) = A073802(n). - _Reinhard Zumkeller_, Mar 12 2010

%F A006530(a(n)) = A082062(n). - _Reinhard Zumkeller_, Jul 10 2011

%F a(A014567(n)) = 1; A069059(a(n)) > 1. - _Reinhard Zumkeller_, Mar 23 2013

%F a(n) = n/A017666(n). - _Antti Karttunen_, May 22 2017

%t Table[GCD[n,DivisorSigma[1,n]],{n,110}] (* _Harvey P. Dale_, Aug 23 2015 *)

%o (Haskell)

%o a009194 n = gcd (a000203 n) n -- _Reinhard Zumkeller_, Mar 23 2013

%o (PARI) a(n) = gcd(n, sigma(n)); \\ _Michel Marcus_, Oct 23 2013

%Y Cf. A000203, A003624, A007691, A014567, A017666, A063906, A069059, A073802, A082062, A179931, A205523, A216793 (positions of records), A234367, A249917.

%Y Cf. also A009191, A009205, A009242, A274382, A286591, A286594.

%K nonn

%O 1,6

%A _David W. Wilson_