login
A009111
List of ordered areas of Pythagorean triangles.
15
6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 840, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620
OFFSET
1,1
COMMENTS
All terms are divisible by 6.
Let k be even, k > 2, q = (k/2)^2 - 1, and b = (kq)/2. Then, for any k, b is a term of a(n). In other words, for any even k > 2, there is at least one such integer q > 2 that b = (kq)/2 and b is a term of a(n), while hypotenuse c = q + 2 (proved by Anton Mosunov). - Sergey Pavlov, Mar 02 2017
Let x be odd, x > 1, k == 0 (mod x), k > 0, y = (x-1)/2, q = ky + (ky/x), b = (kq)/2. Then b is a term of a(n), while hypotenuse c = q + k/x. As a special case of the above equation (k = x), for each odd k > 1 there exist such q and b that q = (k^2 - 1)/2, b = (kq)/2, and b is a term of a(n), while hypotenuse c = q + 1. - Sergey Pavlov, Mar 06 2017
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, 2nd Ed., Chpt. XIV, "The Eternal Triangle", pp. 104-134, Dover Publ., NY, 1964.
Andrew Granville, Solution to Problem 90:07, Western Number Theory Problems, 1991-12-19 & 22, ed. R. K. Guy.
LINKS
Supriya Mohanty and S. P. Mohanty, Pythagorean Numbers, Fibonacci Quarterly 28 (1990), 31-42.
FORMULA
Theorem: The number of pairs of integers a > b > 0 with ab(a^2-b^2) < n^2 is Cn + O(n^(2/3)) where C = (1/2)*Integral_{1..infinity} du/sqrt(u^3-u). [Granville] - N. J. A. Sloane, Feb 07 2008
EXAMPLE
6 is in the sequence because it is the area of the 3-4-5 triangle.
MATHEMATICA
t = {}; nn = 200; mx = Sqrt[2*nn - 1] (nn - 1)/2; Do[x = Sqrt[n^2 - d^2]; If[x > 0 && IntegerQ[x] && x > d && d*x/2 <= mx, AppendTo[t, d*x/2]], {n, nn}, {d, n - 1}]; t = Sort[t]; t (* T. D. Noe, Sep 23 2013 *)
CROSSREFS
Sequence in context: A131906 A185210 A046131 * A009112 A057101 A057228
KEYWORD
nonn
STATUS
approved