login
Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).
22

%I #36 Jun 18 2021 21:57:03

%S 2,3,4,5,7,9,11,13,16,17,19,23,25,29,31,37,41,43,47,49,53,59,61,64,67,

%T 71,73,79,81,83,89,97,101,103,107,109,113,121,127,131,137,139,149,151,

%U 157,163,167,169,173,179,181,191,193,197,199,211,223,227,229,233,239

%N Numbers whose number of divisors is prime (i.e., numbers of the form p^(q-1) for primes p,q).

%C Invented by the HR Automatic Concept Formation Program. If the sum of divisors is prime, then the number of divisors is prime, i.e., this is a supersequence of A023194.

%C A010055(a(n)) * A010051(A100995(a(n))+1) = 1. - _Reinhard Zumkeller_, Jun 06 2013

%D S. Colton, Automated Theory Formation in Pure Mathematics. New York: Springer (2002)

%H Indranil Ghosh, <a href="/A009087/b009087.txt">Table of n, a(n) for n = 1..12546</a> (terms 1..1000 from T. D. Noe)

%H S. Colton, <a href="http://www.cs.uwaterloo.ca/journals/JIS/colton/joisol.html">Refactorable Numbers - A Machine Invention</a>, J. Integer Sequences, Vol. 2, 1999, #2.

%F p^(q-1), p, q primes.

%e tau(16)=5 and 5 is prime.

%t Select[Range[250],PrimeQ[DivisorSigma[0,#]]&] (* _Harvey P. Dale_, Sep 28 2011 *)

%o (Haskell)

%o a009087 n = a009087_list !! (n-1)

%o a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list

%o -- _Reinhard Zumkeller_, Jun 05 2013

%o (PARI) is(n)=isprime(isprimepower(n)+1) \\ _Charles R Greathouse IV_, Sep 16 2015

%Y Subsequence of A000961.

%Y Cf. A023194, A036454, A203967.

%K nice,nonn,easy

%O 1,1

%A Simon Colton (simonco(AT)cs.york.ac.uk)