%I #28 Sep 13 2023 07:21:57
%S 1,1,1,2,3,6,10,20,37,73,139,275,533,1059,2075,4126,8134,16194,32058,
%T 63910,126932,253252,503933,1006056,2004838,4004124,7987149,15957964,
%U 31854676,63660327,127141415,254136782,507750109,1015059238,2028564292,4055812657,8107052520
%N Number of increasing sequences of Goldbach type with maximal element n.
%C Equivalent to A066062 and A164047, except for initial term and offset, as shown by J. Marzuola and A. Miller in "Counting numerical sets with no small atoms" (2010). - _Martin Fuller_, Sep 13 2023
%D M. Torelli, Increasing integer sequences and Goldbach's conjecture, preprint, 1996.
%H Martin Fuller, <a href="/A008929/b008929.txt">Table of n, a(n) for n = 1..67</a>
%H S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Monoids of natural numbers</a>
%H S. R. Finch, <a href="/A066062/a066062.pdf">Monoids of natural numbers</a>, March 17, 2009. [Cached copy, with permission of the author]
%H J. Marzuola and A. Miller, <a href="https://doi.org/10.1016/j.jcta.2010.03.002">Counting numerical sets with no small atoms</a>, Journal of Combinatorial Theory A, Vol. 117, Issue 6 (2010), 650-667.
%H Mauro Torelli, <a href="http://dx.doi.org/10.1051/ita:2006017">Increasing integer sequences and Goldbach's conjecture</a>, RAIRO Theoret. Informatics 40 (2) (2006) 107-121.
%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%Y Cf. A066062, A164047.
%K nonn
%O 1,4
%A Mauro Torelli (torelli(AT)hermes.mc.dsi.unimi.it)
%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 08 2010
%E a(34) onwards from _Martin Fuller_, Sep 13 2023