%I #31 Sep 08 2022 08:44:36
%S 51,154,77,232,116,58,29,88,44,22,11,34,17,52,26,13,40,20,10,5,16,8,4,
%T 2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,
%U 1,4,2,1,4,2,1,4,2,1,4,2,1
%N 3x+1 sequence starting at 51.
%D R. K. Guy, Unsolved Problems in Number Theory, E16.
%H Vincenzo Librandi, <a href="/A008883/b008883.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1).
%p f := proc(n) option remember; if n = 0 then 51; elif f(n-1) mod 2 = 0 then f(n-1)/2 else 3*f(n-1)+1; fi; end;
%t NestList[If[EvenQ[#], #/2, 3# + 1]&, 51, 100] (* _Vincenzo Librandi_, Jul 29 2014 *)
%o (Magma) [n eq 1 select 51 else IsOdd(Self(n-1)) select 3*Self(n-1)+1 else Self(n-1) div 2: n in [1..80]]; // _Vincenzo Librandi_, Jul 29 2014
%o (PARI) Collatz(n,lim=0)={
%o my(c=n,e=0,L=List(n)); if(lim==0, e=1; lim=n*10^6);
%o for(i=1,lim, if(c%2==0, c=c/2, c=3*c+1); listput(L,c); if(e&&c==1, break));
%o return(Vec(L)); }
%o print(Collatz(51,60)) \\ A008883 (from 51 first 60)
%o \\ _Anatoly E. Voevudko_, Mar 26 2016
%Y Cf. similar sequences listed in A245671.
%Y Row 51 of A347270.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_.