login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008827 Coefficients from fractional iteration of e^x -1. 3
3, 13, 50, 201, 875, 4138, 21145, 115973, 678568, 4213595, 27644435, 190899320, 1382958543, 10480142145, 82864869802, 682076806157, 5832742205055, 51724158235370, 474869816156749, 4506715738447321, 44152005855084344, 445958869294805287, 4638590332229999351 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 3..200

Rosenberg, Ivo; The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7. See Table I (it is not certain that this is the same sequence. - N. J. A. Sloane, Jun 25 2015)

Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971

MAPLE

[seq(combinat[bell](n)-2, n=3..31)]; # Zerinvary Lajos, Sep 29 2006

a:= n->(add((j+1)*Stirling2(n-1, j), j=2..n-1)): seq(a(n), n=3..31); # Zerinvary Lajos, Apr 18 2007

MATHEMATICA

Table[BellB[n] - 2, {n, 3, 40}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)

PROG

(PARI) a(n)=sum(j=2, n--, (j+1)*stirling(n, j, 2)) \\ Charles R Greathouse IV, Jul 06 2011

CROSSREFS

Cf. A008826.

Equals Bell(n) - 2 = A000110(n) - 2.

Sequence in context: A259338 A196907 A116427 * A026529 A286182 A101052

Adjacent sequences:  A008824 A008825 A008826 * A008828 A008829 A008830

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Jan 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 14:53 EST 2018. Contains 317402 sequences. (Running on oeis4.)