

A008809


Expansion of (1+x^9)/((1x^2)^2*(1x^9)).


1



1, 0, 2, 0, 3, 0, 4, 0, 5, 2, 6, 4, 7, 6, 8, 8, 9, 10, 12, 12, 15, 14, 18, 16, 21, 18, 24, 22, 27, 26, 30, 30, 33, 34, 36, 38, 41, 42, 46, 46, 51, 50, 56, 54, 61, 60, 66, 66, 71, 72, 76, 78, 81, 84, 88, 90, 95, 96, 102, 102, 109, 108, 116, 116, 123, 124, 130
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,1,0,0,0,0,0,1,1,1,1).


FORMULA

G.f.: (1+x^9)/((1x^2)^2*(1x^9)).  G. C. Greubel, Sep 12 2019


MAPLE

seq(coeff(series((1+x^9)/((1x^2)^2*(1x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019


MATHEMATICA

CoefficientList[Series[(1+x^9)/((1x^2)^2*(1x^9)), {x, 0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)


PROG

(PARI) my(x='x+O('x^70)); Vec((1+x^9)/((1x^2)^2*(1x^9))) \\ G. C. Greubel, Sep 12 2019
(MAGMA) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1x^2)^2*(1x^9)) )); // G. C. Greubel, Sep 12 2019
(Sage)
def A008809_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^9)/((1x^2)^2*(1x^9))).list()
A008809_list(70) # G. C. Greubel, Sep 12 2019
(GAP) a:=[1, 0, 2, 0, 3, 0, 4, 0, 5, 2, 6, 4];; for n in [13..70] do a[n]:=a[n1] +a[n2]a[n3]+a[n9]a[n10]a[n11]+a[n12]; od; a; # G. C. Greubel, Sep 12 2019


CROSSREFS

Sequence in context: A263396 A029180 A008802 * A008821 A194749 A096234
Adjacent sequences: A008806 A008807 A008808 * A008810 A008811 A008812


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


STATUS

approved



