This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008797 Molien series for group [2,4]+ = 224. 1
 1, 0, 2, 0, 4, 1, 6, 2, 9, 4, 12, 6, 16, 9, 20, 12, 25, 16, 30, 20, 36, 25, 42, 30, 49, 36, 56, 42, 64, 49, 72, 56, 81, 64, 90, 72, 100, 81, 110, 90, 121, 100, 132, 110, 144, 121, 156, 132, 169, 144, 182, 156, 196, 169 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1). FORMULA G.f.: (1+x^5)/((1-x^2)^2*(1-x^4)). a(n) = floor((n^2+3*n+11+5*(n+1)*(-1)^n)/16). - Tani Akinari, Jul 07 2014 G.f.: ( -1-x^2-x^4+x+x^3 ) / ( (1+x^2)*(1+x)^2*(x-1)^3 ). - R. J. Mathar, Dec 18 2014 MATHEMATICA CoefficientList[Series[(1 + x^5)/((1 - x^2)^2 (1 - x^4)), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 08 2014 *) LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {1, 0, 2, 0, 4, 1, 6}, 60] (* Harvey P. Dale, May 15 2017 *) PROG (PARI) Vec((1+x^5)/(1-x^2)^2/(1-x^4)+ O(x^70)) \\ Michel Marcus, Jul 07 2014 (MAGMA) [Floor((n^2+3*n+11+5*(n+1)*(-1)^n)/16): n in [0..60]]; // Vincenzo Librandi, Jul 08 2014 CROSSREFS Sequence in context: A243981 A056737 A289144 * A239004 A168036 A217930 Adjacent sequences:  A008794 A008795 A008796 * A008798 A008799 A008800 KEYWORD nonn AUTHOR EXTENSIONS Definition clarified by N. J. A. Sloane, Feb 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 22:30 EST 2018. Contains 318154 sequences. (Running on oeis4.)