%I #37 Oct 30 2022 17:17:49
%S 1,7,64,729,10000,161051,2985984,62748517,1475789056,38443359375,
%T 1099511627776,34271896307633,1156831381426176,42052983462257059,
%U 1638400000000000000,68122318582951682301,3011361496339065143296
%N a(n) = (n + 6)^n.
%H Vincenzo Librandi, <a href="/A008787/b008787.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.(x) for b(n) = n^(n-6) = a(n-6): T - (31/32)*T^2 + (575/1296)*T^3 - (415/3456)*T^4 + (137/7200)*T^5 - (1/720)*T^6; where T=T(x) is Euler's tree function (see A000169). - _Len Smiley_, Nov 17 2001
%F E.g.f.: LambertW(-x)^6/(x^6*(1+LambertW(-x))). - _Vladeta Jovovic_, Nov 07 2003
%F E.g.f.: (1/5)*d/dx(LambertW(-x)/(-x))^5. - _Wolfdieter Lang_, Oct 25 2022
%p a:= n-> (n+6)^n: seq(a(n), n=0..20);
%t Table[(n+6)^n,{n,0,20}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 26 2010 *)
%o (Magma) [(n+6)^n: n in [0..20]]; // _Vincenzo Librandi_, Jun 11 2013
%o (PARI) vector(20, n, (n+5)^(n-1)) \\ _G. C. Greubel_, Sep 11 2019
%o (Sage) [(n+6)^n for n in (0..20)] # _G. C. Greubel_, Sep 11 2019
%o (GAP) List([0..20], n-> (n+6)^n); # _G. C. Greubel_, Sep 11 2019
%Y Cf. A000169, A000272, A000312, A007778, A007830, A008785, A008786, this sequence, A008788, A008789, A008790, A008791.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_