login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008733 Molien series for 3-dimensional group [2+, n] = 2*(n/2). 2
1, 0, 2, 1, 4, 2, 6, 4, 9, 6, 12, 9, 16, 12, 20, 16, 25, 20, 30, 25, 36, 30, 42, 36, 49, 42, 56, 49, 64, 56, 72, 64, 81, 72, 90, 81, 100, 90, 110, 100, 121, 110, 132, 121, 144, 132, 156, 144, 169, 156, 182, 169, 196, 182, 210, 196, 225, 210, 240, 225, 256 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,-1,1).

FORMULA

From R. J. Mathar, Nov 04 2008: (Start)

a(n) = A005232(n) - A005232(n-1).

G.f.: (1-x+x^2)/((1-x)^3*(1+x)^2*(1+x^2)). (End)

a(n) = floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16). - Tani Akinari, Aug 23 2013

a(n) = Sum_{i=1..floor((n+4)/2)} floor((i-(n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014

a(n) = (2*n^2+10*n+13+3*(2*n+5)*(-1)^n+4*(-1)^((6*n-1+(-1)^n)/4))/32. - Luce ETIENNE, Jun 09 2015

MATHEMATICA

CoefficientList[Series[(1+x^3)/((1-x^2)^2*(1-x^4)), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 24 2013 *)

LinearRecurrence[{1, 1, -1, 1, -1, -1, 1}, {1, 0, 2, 1, 4, 2, 6}, 70] (* Harvey P. Dale, Nov 23 2015 *)

PROG

(MAGMA) [Floor((n^2+5*n+13+3*(n+1)*(-1)^n)/16): n in [0..70]]; // Vincenzo Librandi, Aug 24 2013

(PARI) a(n)=((n^2+5*n+13+3*(n+1)*(-1)^n))\16 \\ Charles R Greathouse IV, Jun 11 2015

(Sage) [floor((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16) for n in (0..70)] # G. C. Greubel, Jul 30 2019

(GAP) List([0..70], n-> Int((n^2 + 5*n + 13 + 3*(n+1)*(-1)^n)/16)); # G. C. Greubel, Jul 30 2019

CROSSREFS

Sequence in context: A194747 A065423 A239242 * A244515 A154280 A004795

Adjacent sequences:  A008730 A008731 A008732 * A008734 A008735 A008736

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 16:17 EDT 2019. Contains 328223 sequences. (Running on oeis4.)