login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008728 Molien series for 3-dimensional group [2,n ] = *22n. 7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A179052(n) for n < 100. [Reinhard Zumkeller, Jun 27 2010]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 193

Index entries for Molien series

Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).

FORMULA

G.f.: 1/((1-x)^2*(1-x^10)).

a(n) = sum(floor(j/10), {j,0,n+10}), a(n-10) = (1/2)floor(n/10)*(2n-8-10*floor(n/10)). [Mitch Harris, Sep 08 2008]

MAPLE

1/(1-x)^2/(1-x^10)

MATHEMATICA

s=0; lst={}; Do[AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n]; AppendTo[lst, s+=n], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 14 2010 *)

CoefficientList[Series[1 / ((1 - x)^2 (1 - x^10)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 11 2013 *)

CROSSREFS

Cf. A001840, A001972, A008724, A008725, A008726, A008727, A008732.

Sequence in context: A005358 A032518 A131242 * A179052 A083292 A122618

Adjacent sequences:  A008725 A008726 A008727 * A008729 A008730 A008731

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 19:00 EDT 2019. Contains 325144 sequences. (Running on oeis4.)