The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008720 Molien series for 3-dimensional group [2,5] = *225. 2
 1, 0, 2, 0, 3, 1, 4, 2, 5, 3, 7, 4, 9, 5, 11, 7, 13, 9, 15, 11, 18, 13, 21, 15, 24, 18, 27, 21, 30, 24, 34, 27, 38, 30, 42, 34, 46, 38, 50, 42, 55, 46, 60, 50, 65, 55, 70, 60, 75, 65, 81, 70, 87, 75, 93, 81, 99, 87, 105, 93, 112, 99, 119, 105, 126, 112, 133, 119, 140, 126, 148, 133, 156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 223 Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,1,0,-2,0,1). MAPLE 1/((1-x^2)^2*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0 .. 80); # modified by G. C. Greubel, Sep 09 2019 MATHEMATICA LinearRecurrence[{0, 2, 0, -1, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 1, 4, 2, 5}, 80] (* Harvey P. Dale, Dec 10 2015 *) PROG (PARI) my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^5))) \\ G. C. Greubel, Sep 09 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Sep 09 2019 (Sage) def A008720_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(1/((1-x^2)^2*(1-x^5))).list() A008720_list(80) # G. C. Greubel, Sep 09 2019 (GAP) a:=[1, 0, 2, 0, 3, 1, 4, 2, 5];; for n in [10..80] do a[n]:=2*a[n-2]-a[n-4] +a[n-5]-2*a[n-7]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019 CROSSREFS Sequence in context: A097065 A084964 A267182 * A340622 A263352 A008734 Adjacent sequences:  A008717 A008718 A008719 * A008721 A008722 A008723 KEYWORD nonn AUTHOR EXTENSIONS Terms a(65) onward added by G. C. Greubel, Sep 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 12:39 EDT 2021. Contains 343135 sequences. (Running on oeis4.)