login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008669 Molien series for 4-dimensional complex reflection group of order 7680 (in powers of x^4). 3
1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 34, 40, 47, 54, 62, 71, 80, 91, 102, 114, 127, 141, 156, 172, 189, 207, 226, 247, 268, 291, 315, 340, 367, 395, 424, 455, 487, 521, 556, 593, 631, 671, 713, 756, 801, 848, 896, 947, 999, 1053, 1109, 1167, 1227, 1289 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of partitions of n into parts 1, 2, 3 and 5. - David Neil McGrath, Sep 15 2014

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,3,5).

L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 29).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 239

Atsuto Seko, Atsushi Togo, Isao Tanaka, Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential, arXiv:1901.02118 [physics.comp-ph], 2019.

Index entries for two-way infinite sequences

Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,0,0,-1,0,1,1,-1).

Index entries for Molien series

FORMULA

a(n) = round((n+3)*(2*n+9)*(n+9)/360).

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).

a(n) = -a(-11-n).

a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-7) + a(n-9) + a(n-10) - a(n-11). - David Neil McGrath, Sep 15 2014

EXAMPLE

There are 6 partitions of 5 into parts 1,2,3 and 5. These are (5)(32)(311)(221)(2111)(11111). - David Neil McGrath, Sep 15 2014

MAPLE

1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0..60); # modified by G. C. Greubel, Sep 08 2019

MATHEMATICA

LinearRecurrence[{1, 1, 0, -1, 0, 0, -1, 0, 1, 1, -1}, {1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20}, 60] (* Harvey P. Dale, Feb 25 2015 *)

PROG

(PARI) a(n)=round((n+3)*(2*n+9)*(n+9)/360)

(MAGMA) [Round((n+3)*(2*n+9)*(n+9)/360): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011

(Sage) [round((n+3)*(2*n+9)*(n+9)/360) for n in (0..60)] # G. C. Greubel, Sep 08 2019

CROSSREFS

Sequence in context: A049700 A002984 A109965 * A055104 A062435 A171997

Adjacent sequences:  A008666 A008667 A008668 * A008670 A008671 A008672

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 20:20 EDT 2020. Contains 333117 sequences. (Running on oeis4.)