The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008666 Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)). 1
 1, 0, 1, 1, 1, 2, 3, 2, 4, 5, 5, 7, 9, 8, 12, 14, 14, 18, 22, 21, 28, 31, 32, 39, 45, 45, 55, 61, 63, 74, 83, 84, 99, 108, 112, 128, 141, 144, 165, 178, 185, 207, 225, 231, 259, 278, 288, 318, 342, 352, 389, 414, 429, 468, 500, 515, 562, 595, 616, 666, 707, 728, 787, 830, 858, 921 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Molien series for 5-dimensional complex reflection group of order 2^7.3^4.5 is given by 1/((1-x^4)*(1-x^6)*(1-x^10)*(1-x^12)*(1-x^18)). a(n) is the number of partitions of n into parts 2, 3, 5, 6, and 9. - Joerg Arndt, Sep 08 2019 REFERENCES L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 33). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 247 Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 0, 0, 1, -1, -2, 0, 1, -1, -1, 1, 1, -1, 0, 2, 1, -1, 0, 0, -1, -1, 0, 1). FORMULA a(n) ~ 1/38880*n^4 + 1/3888*n^3. - Ralf Stephan, Apr 29 2014 MAPLE seq(coeff(series(1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 07 2019 MATHEMATICA CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^5)(1-x^6)(1-x^9)), {x, 0, 70}], x] (* Harvey P. Dale, Jul 28 2012 *) PROG (PARI) a(n)=polcoeff(1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)) + x*O(x^n), n) (MAGMA) R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9)) )); // G. C. Greubel, Sep 07 2019 (Sage) def AA008666_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P(1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)*(1-x^9))).list() AA008666_list(70) # G. C. Greubel, Sep 07 2019 CROSSREFS Sequence in context: A174625 A178853 A120641 * A240854 A332900 A286621 Adjacent sequences:  A008663 A008664 A008665 * A008667 A008668 A008669 KEYWORD nonn AUTHOR EXTENSIONS Terms a(51) onward added by G. C. Greubel, Sep 07 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 23:10 EDT 2020. Contains 334858 sequences. (Running on oeis4.)