This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008644 Molien series of 5 X 5 upper triangular matrices over GF( 2 ). 0
 1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 201, 201, 236, 236, 280, 280, 324, 324, 380, 380, 436, 436, 504, 504, 572, 572, 656, 656, 740, 740, 840, 840, 940, 940, 1060, 1060, 1180, 1180, 1320, 1320, 1460, 1460, 1625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n into parts 1, 2, 4, 8, an 16. [Joerg Arndt, Jul 12 2013] REFERENCES D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105. LINKS INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 243 Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1). FORMULA G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)). [Joerg Arndt, Jul 12 2013] MAPLE 1/(1-x)/(1-x^2)/(1-x^4)/(1-x^8)/(1-x^16) PROG (PARI) a(n)=floor((n^4+62*n^3+1271*n^2+9610*n+31125+(n+1)*(2*n^2+91*n+1179)*(-1)^n)/24576+1/512*(-1)^(n\2)*(n\2+1)*(n\2+15)+1/32*(-1)^(n\4)*(n\4+1)*(n%4>1))  \\ Tani Akinari, Jul 12 2013 (PARI) Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16))+O(x^66)) \\ Joerg Arndt, Jul 12 2013 CROSSREFS Sequence in context: A023023 A184157 A008643 * A008645 A018819 A211511 Adjacent sequences:  A008641 A008642 A008643 * A008645 A008646 A008647 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 01:51 EST 2019. Contains 320381 sequences. (Running on oeis4.)