login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008583 Molien series for Weyl group E_7. 3
1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 22, 29, 36, 44, 55, 67, 80, 98, 117, 138, 165, 194, 226, 266, 309, 356, 413, 475, 542, 622, 708, 802, 911, 1029, 1157, 1304, 1462, 1633, 1827, 2036, 2261, 2514, 2785 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The relevant generating function 1/((1-z^2)*(1-z^6)*(1-z^8)*(1-z^10)*(1-z^12)*(1-z^14)*(1-z^18)) is reduced with z^2=x below to indicate that the intermediate zeros are not stored in this sequence.

REFERENCES

H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, New Series, no. 14. Springer Verlag, 1957, Table 10.

L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 36).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 250

Index entries for Molien series

FORMULA

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)).

MAPLE

A008583_list := proc(n) local G, j;

G:= series(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9)), x, n+1);

[seq(coeff(G, x, j), j=0..n)];

end proc; # Robert Israel, Mar 26 2012

MATHEMATICA

CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)(1-x^6)(1-x^7)(1-x^9)), {x, 0, 50}], x] (* Harvey P. Dale, Mar 04 2013 *)

PROG

(MAGMA) MolienSeries(CoxeterGroup("E7")); // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006

(PARI) A008583_list(n)=Vec(1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^9))+O(x^n))  /* returns n terms [a(0), ..., a(n-1)] */ \\ M. F. Hasler, Mar 26 2012

(Sage)

def A008583_list(n) :

    R.<t> = PowerSeriesRing(ZZ)

    G = 1/((1-t)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^9) + O(t^n))

    return G.padded_list()  # Peter Luschny, Mar 27 2012

CROSSREFS

Cf. A005795.

Sequence in context: A003107 A217123 A014977 * A053253 A095913 A102848

Adjacent sequences:  A008580 A008581 A008582 * A008584 A008585 A008586

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.