OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5) for n>5. - Colin Barker, Mar 03 2015
G.f.: (1+x)*(1+6*x+16*x^2+6*x^3+x^4)/(1-x)^5. - Colin Barker, Mar 03 2015
E.g.f.: -1 + (4 + 20*x + 50*x^2 + 30*x^3 + 5*x^4)*exp(x)/2. - G. C. Greubel, Nov 10 2019
MAPLE
1, seq( (5*k^4+15*k^2+4)/2, k=1..40);
MATHEMATICA
Table[If[n==0, 1, (4+15*n^2+5*n^4)/2], {n, 0, 40}] (* G. C. Greubel, Nov 10 2019 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 12, 72, 272, 762, 1752}, 50] (* Harvey P. Dale, Jan 08 2020 *)
PROG
(PARI) Vec(-(x+1)*(x^4+6*x^3+16*x^2+6*x+1) / (x-1)^5 + O(x^40)) \\ Colin Barker, Mar 03 2015
(PARI) vector(46, n, if(n==1, 1, (4 +15*(n-1)^2 +5*(n-1)^4)/2 ) ) \\ G. C. Greubel, Nov 10 2019
(Magma) [1] cat [(4+15*n^2+5*n^4)/2: n in [1..45]]; // G. C. Greubel, Nov 10 2019
(Sage) [1]+[(4+15*n^2+5*n^4)/2 for n in (1..45)]; # G. C. Greubel, Nov 10 2019
(GAP) Concatenation([1], List([1..45], n-> (4+15*n^2+5*n^4)/2 )); # G. C. Greubel, Nov 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved