login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008438 Sum of divisors of 2n + 1. 49

%I

%S 1,4,6,8,13,12,14,24,18,20,32,24,31,40,30,32,48,48,38,56,42,44,78,48,

%T 57,72,54,72,80,60,62,104,84,68,96,72,74,124,96,80,121,84,108,120,90,

%U 112,128,120,98,156,102,104,192,108,110,152,114,144,182,144,133,168

%N Sum of divisors of 2n + 1.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Number of ways of writing n as the sum of 4 triangular numbers.

%C Bisection of A000203. - _Omar E. Pol_, Mar 14 2012

%D B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).

%D H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285. MR0382192 (52 #3080)

%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).

%D W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.

%D H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.

%D N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).

%D M. D. Hirschhorn, The number of representations of a number by various forms, Discr. Math., 298 (2005), 205-211.

%D N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).

%D M. Koike, Modular forms on non-compact arithmetic triangle groups, preprint.

%D K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94; http://www.math.wisc.edu/~ono/reprints/006.pdf.

%D G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.

%D K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly, 120 (2013), 329-345.

%H T. D. Noe, <a href="/A008438/b008438.txt">Table of n, a(n) for n=0..10000</a>

%H H. Rosengren, <a href="http://arXiv.org/abs/math.NT/0504272">Sums of triangular numbers from the Frobenius determinant</a>

%H M. Somos, <a href="http://cis.csuohio.edu/~somos/multiq.pdf">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi is a Ramanujan theta function. - _Michael Somos_, Apr 11 2004

%F Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - _Michael Somos_, Apr 11 2004

%F Euler transform of period 2 sequence [ 4, -4, 4, -4, ...]. - _Michael Somos_, Apr 11 2004

%F a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - _Michael Somos_, Jul 07 2004

%F Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - _Michael Somos_, Apr 08 2005

%F Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^3), B(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).

%F Given g.f. A(x), then B(x) = x * A(x^2) satisfies 0 = f(B(x), B(x^2), B(x^3), B(x^6) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - _Michael Somos_, May 30 2005

%F G.f.: Sum_{k>0} (2k - 1) * x^(k - 1) / (1 - x^(2k - 1)).

%F G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - _Michael Somos_, Apr 11 2004

%F G.f. Sum_{k>=0} a(k) * x^(2k + 1) = x( * Prod_{k>0} (1 - x^(4*k))^2 / (1 - x^(2k)))^ 4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) +2 * x^(4*k) / (1 - x^(4*k))). - _Michael Somos_, Jul 07 2004

%F Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - _Michael Somos_, Apr 11 2004

%F 8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).

%F a(n) = A000203(2n+1). - _Omar E. Pol_, Mar 14 2012

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. _Michael Somos_, Jun 12 2014

%e Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.

%e F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...

%e G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...

%e G.f. = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...

%p A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # _R. J. Mathar_, Mar 23 2011

%t DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* _Ant King_, Dec 02 2010 *)

%o (PARI) {a(n) = if( n<0, 0, sigma( 2*n + 1))};

%o (PARI) {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1,(sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* _Michael Somos_, Sep 17 2004 */

%o (PARI) {a(n) = local(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A))^2 / eta(x^2 + A))^4, n))}; /* _Michael Somos_, Sep 17 2004 */

%o (Sage) ModularForms( Gamma0(4), 2, prec=124).1; # _Michael Somos_, Jun 12 2014

%o (MAGMA) Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* _Michael Somos_, Jun 12 2014 */

%o (Haskell)

%o a008438 = a000203 . a005408 -- _Reinhard Zumkeller_, Sep 22 2014

%Y Cf. A000118, A000593, A005879, A096727, A115607, A129588, A225699/A225700.

%Y Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

%Y Cf. A000203, A005408, A099774.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_.

%E Comments from Len Smiley (smiley(AT)math.uaa.alaska.edu), _Enoch Haga_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 29 01:24 EST 2014. Contains 250479 sequences.