%I #23 May 10 2013 12:43:51
%S 1,1,-2,3,4,-90,786,-5670,34784,-136584,-824760,33137280,-633666648,
%T 10089623544,-145675230960,1910939579640,-21215723677440,
%U 136130901474240,2280768466608576,-135531682778927808,4380044490023909760,-119144344839822570240
%N n-th derivative of x^(1/x) at x=1.
%H Vincenzo Librandi, <a href="/A008405/b008405.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) = Sum_{k=0..n} Stirling1(n, k)*A003725(k). - _Vladeta Jovovic_, Oct 02 2003
%t Function[ n, Series[ (1+x)^(1/(1+x)), {x, 0, n} ]//(Table[ SeriesCoefficient[ #, i ]*i!, {i, 0, n} ])& ][ 20 ]
%t a[n_] := Sum[ StirlingS1[n, k]*Sum[ (-j)^(k-j)*Binomial[k, j], {j, 0, k}], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Nov 28 2012, after _Vladeta Jovovic_ *)
%t NestList[Factor[D[#1, x]] &, x^(1/x), 22] /. (x -> 1) (* _Robert G. Wilson v_, Feb 03 2013 *)
%K sign
%O 0,3
%A _Olivier Gérard_