login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008280 Boustrophedon version of triangle of Euler-Bernoulli or Entringer numbers read by rows. 14
1, 0, 1, 1, 1, 0, 0, 1, 2, 2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, 61, 61, 56, 46, 32, 16, 0, 0, 61, 122, 178, 224, 256, 272, 272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The earliest known reference for this triangle is Seidel (1877). - Don Knuth, Jul 13 2007

Sum of row n = A000111(n+1). - Reinhard Zumkeller, Nov 01 2013

REFERENCES

M. D. Atkinson: Partial orders and comparison problems, Sixteenth Southeastern Conference on Combinatorics, Graph Theory and Computing, (Boca Raton, Feb 1985), Congressus Numerantium 47, 77-88.

J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 110.

A. J. Kempner, On the shape of polynomial curves, Tohoku Math. J., 37 (1933), 347-362.

A. A. Kirillov, Variations on the triangular theme, Amer. Math. Soc. Transl., (2), Vol. 169, 1995, pp. 43-73, see p. 53.

R. P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 141, Cambridge University Press (2012), p. 128, 174, 175.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

V. I. Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. J. 63 (1991), 537-555.

V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.

M. D. Atkinson, Zigzag permutations and comparisons of adjacent elements, Information Processing Letters 21 (1985), 187-189.

Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.

Foata, Dominique; Han, Guo-Niu; Strehl, Volker The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017). Example 4.3

B. Gourevitch, L'univers de Pi

Peter Luschny, An old operation on sequences: the Seidel transform

J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).

C. Poupard, De nouvelles significations énumératives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.

Sanjay Ramassamy, Modular periodicity of the Euler numbers and a sequence by Arnold, arXiv:1712.08666 [math.CO], 2017.

L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187; see Beilage 5, pp. 183-184.

R. Street, Trees, permutations and the tangent function, arXiv:math/0303267 [math.HO], 2003.

Wikipedia, Boustrophedon transform

Index entries for sequences related to boustrophedon transform

FORMULA

T(n,m) = abs( Sum_{k=0..n} C(m,k)*Euler(n-m+k) ). - Vladimir Kruchinin, Apr 06 2015

EXAMPLE

This version of the triangle begins:

[0] [ 1]

[1] [ 0, 1]

[2] [ 1, 1, 0]

[3] [ 0, 1, 2, 2]

[4] [ 5, 5, 4, 2, 0]

[5] [ 0, 5, 10, 14, 16, 16]

[6] [ 61, 61, 56, 46, 32, 16, 0]

[7] [ 0, 61, 122, 178, 224, 256, 272, 272]

[8] [1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0]

[9] [ 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936]

See A008281 and A108040 for other versions.

MATHEMATICA

max = 9; t[0, 0] = 1; t[n_, m_] /; n < m || m < 0 = 0; t[n_, m_] := t[n, m] = Sum[t[n-1, n-k], {k, m}]; tri = Table[t[n, m], {n, 0, max}, {m, 0, n}]; Flatten[ {Reverse[#[[1]]], #[[2]]} & /@ Partition[tri, 2]] (* Jean-François Alcover, Oct 24 2011 *)

PROG

(Sage) # Algorithm of L. Seidel (1877)

# Prints the first n rows of the triangle.

def A008280_triangle(n) :

A = {-1:0, 0:1}

k = 0; e = 1

for i in range(n) :

Am = 0

A[k + e] = 0

e = -e

for j in (0..i) :

Am += A[k]

A[k] = Am

k += e

print([A[z] for z in (-i//2..i//2)])

A008280_triangle(10) # Peter Luschny, Jun 02 2012

(Haskell)

a008280 n k = a008280_tabl !! n !! k

a008280_row n = a008280_tabl !! n

a008280_tabl = ox True a008281_tabl where

ox turn (xs:xss) = (if turn then reverse xs else xs) : ox (not turn) xss

-- Reinhard Zumkeller, Nov 01 2013

(Python) # Python 3.2 or higher required.

from itertools import accumulate

A008280_list = blist = [1]

for n in range(10):

blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))

A008280_list.extend(blist)

print(A008280_list) # Chai Wah Wu, Sep 20 2014

(Python) Uses function seidel from A008281.

def A008280row(n): return seidel(n) if n % 2 else seidel(n)[::-1]

for n in range(8): print(A008280row(n)) # Peter Luschny, Jun 01 2022

(Maxima)

T(n, m):=abs(sum(binomial(m, k)*euler(n-m+k), k, 0, m)); /* Vladimir Kruchinin, Apr 06 2015 */

CROSSREFS

Cf. A008281, A108040, A058257.

Cf. A000657 (central terms); A227862.

Sequence in context: A116559 A210802 A257943 * A239005 A236935 A213187

Adjacent sequences: A008277 A008278 A008279 * A008281 A008282 A008283

KEYWORD

nonn,tabl,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 18:07 EST 2022. Contains 358510 sequences. (Running on oeis4.)