login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008274 Total length of performances of n fragments in Stockhausen problem. 0
0, 8, 408, 18768, 1106960, 88667160, 9451834728, 1299134553248, 223938037975968, 47323771284289320, 12033854252927528120, 3625294706083960689648, 1276951433892702568064688 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..13.

R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.

Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.

FORMULA

a(n) = A008270(n) - Sum_{k=1..n} n! * k / (n-k)! - Sum_{k=2..n+1} n! * k * (k-2) / (n-k+1)! [from Read and Yen]. - Sean A. Irvine, Mar 08 2018

CROSSREFS

Sequence in context: A191874 A183579 A015091 * A188422 A188393 A267162

Adjacent sequences:  A008271 A008272 A008273 * A008275 A008276 A008277

KEYWORD

nonn

AUTHOR

Lily Yen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 08:22 EDT 2018. Contains 313934 sequences. (Running on oeis4.)