login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008273 Number of performances of n fragments in Stockhausen problem. 0
0, 2, 78, 2724, 125660, 8194710, 735861882, 87393619208, 13265357282424, 2504688304672170, 575664637463471270, 158222202489198948012, 51242608446214266856788, 19312113111031410277418174 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..14.

R. C. Read, Combinatorial problems in theory of music, Discrete Math. 167 (1997), 543-551.

Ronald C. Read, Lily Yen, A note on the Stockhausen problem, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.

FORMULA

a(n) = Sum_{k=1..n} binomial(n, k) * ((2*k)! / 2^k - k * k!). - Sean A. Irvine, Mar 08 2018

CROSSREFS

Sequence in context: A183578 A184965 A157062 * A231240 A197101 A245674

Adjacent sequences:  A008270 A008271 A008272 * A008274 A008275 A008276

KEYWORD

nonn

AUTHOR

Lily Yen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 19:58 EDT 2018. Contains 313809 sequences. (Running on oeis4.)