login
Total length of strings on n symbols in Stockhausen problem.
1

%I #12 Mar 09 2018 03:37:33

%S 1,20,507,19552,1113485,88725876,9452410135,1299140690912,

%T 223938108997497,47323772172058420,12033854264863090451,

%U 3625294706255832787200,1276951433895343148472517

%N Total length of strings on n symbols in Stockhausen problem.

%H R. C. Read, <a href="http://dx.doi.org/10.1016/S0012-365X(96)00255-5">Combinatorial problems in theory of music</a>, Discrete Math. 167 (1997), 543-551.

%H Ronald C. Read, Lily Yen, <a href="https://doi.org/10.1006/jcta.1996.0085">A note on the Stockhausen problem</a>, J. Comb. Theory, Ser. A 76, No. 1 (1996), 1-10.

%F a(n) = n * Sum_{k=0..n-1} binomial(n - 1, k) * (2*k+1) * (2*k+1)! / 2^k. - _Sean A. Irvine_, Mar 08 2018

%K nonn

%O 1,2

%A _Lily Yen_