%I #25 Aug 03 2024 05:44:41
%S 6,10,14,18,26,30,38,42,42,54,62,74,74,90,90,90,108,114,114,134,134,
%T 146,162,172,180,186,186,218,222,230,240,240,254,258,270,270,290,290,
%U 290,330,348,348,366,366,366,398,398,410,410,434,440,440,474,474,474,474,474,522
%N a(n) is the largest even number k such that 6, 8, ..., k are sums of 2 of first n odd primes.
%H David A. Corneth, <a href="/A007944/b007944.txt">Table of n, a(n) for n = 1..10000</a>
%H K. Kashihara, <a href="http://www.gallup.unm.edu/~smarandache/Kashihara.pdf">Comments and Topics on Smarandache Notions and Problems</a>, Erhus University Press, 1996, 50 pages. See page 20.
%H K. Kashihara, <a href="/A011772/a011772.pdf">Comments and Topics on Smarandache Notions and Problems</a>, Erhus University Press, 1996, 50 pages. [Cached copy] See page 20.
%H F. Smarandache, <a href="http://www.gallup.unm.edu/~smarandache/OPNS.pdf">Only Problems, Not Solutions!</a>
%F a(n) << n log n. - _Charles R Greathouse IV_, Sep 19 2012
%F More specifically, a(n) <= 2*prime(n+1). On the Goldbach conjecture a(n) >= prime(n+1) + 3. - _Charles R Greathouse IV_, Dec 09 2014
%o (PARI) first(n) = {n+=3; my(fnf = 6, pr = primes(n), found = vector(pr[n]), res = vector(n-3), start = 2); for(i = 2, n-2, for(j = start, i, found[(pr[i]+pr[j])>>1] = 1);for(j = fnf>>1, pr[n], if(found[j]==0, fnf = j<<1; break)); while(pr[start] + pr[i+1]<fnf, start++); while(pr[start]+pr[i+1]>fnf, start--); res[i-1]=fnf-2); res} \\ _David A. Corneth_, Jul 06 2017
%K nonn,easy
%O 1,1
%A R. Muller
%E More terms from _David W. Wilson_